direct product, metabelian, supersoluble, monomial
Aliases: C32×C32⋊C6, C34⋊8S3, C34⋊6C6, C3⋊S3⋊C33, He3⋊5(C3×C6), C33⋊8(C3×C6), C33⋊9(C3×S3), C32⋊(C32×C6), (C3×He3)⋊20C6, C3.2(S3×C33), (C32×He3)⋊1C2, C32⋊1(S3×C32), (C3×C3⋊S3)⋊C32, (C32×C3⋊S3)⋊2C3, SmallGroup(486,222)
Series: Derived ►Chief ►Lower central ►Upper central
C32 — C32×C32⋊C6 |
Generators and relations for C32×C32⋊C6
G = < a,b,c,d,e | a3=b3=c3=d3=e6=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1d-1, ede-1=d-1 >
Subgroups: 1300 in 360 conjugacy classes, 90 normal (11 characteristic)
C1, C2, C3, C3, C3, S3, C6, C32, C32, C32, C3×S3, C3⋊S3, C3×C6, He3, He3, C33, C33, C33, C32⋊C6, S3×C32, C3×C3⋊S3, C32×C6, C3×He3, C3×He3, C34, C34, C3×C32⋊C6, S3×C33, C32×C3⋊S3, C32×He3, C32×C32⋊C6
Quotients: C1, C2, C3, S3, C6, C32, C3×S3, C3×C6, C33, C32⋊C6, S3×C32, C32×C6, C3×C32⋊C6, S3×C33, C32×C32⋊C6
(1 24 25)(2 19 26)(3 20 27)(4 21 28)(5 22 29)(6 23 30)(7 15 46)(8 16 47)(9 17 48)(10 18 43)(11 13 44)(12 14 45)(31 50 37)(32 51 38)(33 52 39)(34 53 40)(35 54 41)(36 49 42)
(1 7 38)(2 8 39)(3 9 40)(4 10 41)(5 11 42)(6 12 37)(13 36 22)(14 31 23)(15 32 24)(16 33 19)(17 34 20)(18 35 21)(25 46 51)(26 47 52)(27 48 53)(28 43 54)(29 44 49)(30 45 50)
(1 48 42)(2 50 10)(3 13 32)(4 39 45)(5 7 53)(6 35 16)(8 30 41)(9 36 24)(11 38 27)(12 21 33)(14 28 52)(15 40 22)(17 49 25)(18 19 37)(20 44 51)(23 54 47)(26 31 43)(29 46 34)
(1 24 25)(2 26 19)(3 20 27)(4 28 21)(5 22 29)(6 30 23)(7 15 46)(8 47 16)(9 17 48)(10 43 18)(11 13 44)(12 45 14)(31 37 50)(32 51 38)(33 39 52)(34 53 40)(35 41 54)(36 49 42)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)
G:=sub<Sym(54)| (1,24,25)(2,19,26)(3,20,27)(4,21,28)(5,22,29)(6,23,30)(7,15,46)(8,16,47)(9,17,48)(10,18,43)(11,13,44)(12,14,45)(31,50,37)(32,51,38)(33,52,39)(34,53,40)(35,54,41)(36,49,42), (1,7,38)(2,8,39)(3,9,40)(4,10,41)(5,11,42)(6,12,37)(13,36,22)(14,31,23)(15,32,24)(16,33,19)(17,34,20)(18,35,21)(25,46,51)(26,47,52)(27,48,53)(28,43,54)(29,44,49)(30,45,50), (1,48,42)(2,50,10)(3,13,32)(4,39,45)(5,7,53)(6,35,16)(8,30,41)(9,36,24)(11,38,27)(12,21,33)(14,28,52)(15,40,22)(17,49,25)(18,19,37)(20,44,51)(23,54,47)(26,31,43)(29,46,34), (1,24,25)(2,26,19)(3,20,27)(4,28,21)(5,22,29)(6,30,23)(7,15,46)(8,47,16)(9,17,48)(10,43,18)(11,13,44)(12,45,14)(31,37,50)(32,51,38)(33,39,52)(34,53,40)(35,41,54)(36,49,42), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)>;
G:=Group( (1,24,25)(2,19,26)(3,20,27)(4,21,28)(5,22,29)(6,23,30)(7,15,46)(8,16,47)(9,17,48)(10,18,43)(11,13,44)(12,14,45)(31,50,37)(32,51,38)(33,52,39)(34,53,40)(35,54,41)(36,49,42), (1,7,38)(2,8,39)(3,9,40)(4,10,41)(5,11,42)(6,12,37)(13,36,22)(14,31,23)(15,32,24)(16,33,19)(17,34,20)(18,35,21)(25,46,51)(26,47,52)(27,48,53)(28,43,54)(29,44,49)(30,45,50), (1,48,42)(2,50,10)(3,13,32)(4,39,45)(5,7,53)(6,35,16)(8,30,41)(9,36,24)(11,38,27)(12,21,33)(14,28,52)(15,40,22)(17,49,25)(18,19,37)(20,44,51)(23,54,47)(26,31,43)(29,46,34), (1,24,25)(2,26,19)(3,20,27)(4,28,21)(5,22,29)(6,30,23)(7,15,46)(8,47,16)(9,17,48)(10,43,18)(11,13,44)(12,45,14)(31,37,50)(32,51,38)(33,39,52)(34,53,40)(35,41,54)(36,49,42), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54) );
G=PermutationGroup([[(1,24,25),(2,19,26),(3,20,27),(4,21,28),(5,22,29),(6,23,30),(7,15,46),(8,16,47),(9,17,48),(10,18,43),(11,13,44),(12,14,45),(31,50,37),(32,51,38),(33,52,39),(34,53,40),(35,54,41),(36,49,42)], [(1,7,38),(2,8,39),(3,9,40),(4,10,41),(5,11,42),(6,12,37),(13,36,22),(14,31,23),(15,32,24),(16,33,19),(17,34,20),(18,35,21),(25,46,51),(26,47,52),(27,48,53),(28,43,54),(29,44,49),(30,45,50)], [(1,48,42),(2,50,10),(3,13,32),(4,39,45),(5,7,53),(6,35,16),(8,30,41),(9,36,24),(11,38,27),(12,21,33),(14,28,52),(15,40,22),(17,49,25),(18,19,37),(20,44,51),(23,54,47),(26,31,43),(29,46,34)], [(1,24,25),(2,26,19),(3,20,27),(4,28,21),(5,22,29),(6,30,23),(7,15,46),(8,47,16),(9,17,48),(10,43,18),(11,13,44),(12,45,14),(31,37,50),(32,51,38),(33,39,52),(34,53,40),(35,41,54),(36,49,42)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54)]])
90 conjugacy classes
class | 1 | 2 | 3A | ··· | 3H | 3I | ··· | 3Q | 3R | ··· | 3AI | 3AJ | ··· | 3BJ | 6A | ··· | 6Z |
order | 1 | 2 | 3 | ··· | 3 | 3 | ··· | 3 | 3 | ··· | 3 | 3 | ··· | 3 | 6 | ··· | 6 |
size | 1 | 9 | 1 | ··· | 1 | 2 | ··· | 2 | 3 | ··· | 3 | 6 | ··· | 6 | 9 | ··· | 9 |
90 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 6 | 6 |
type | + | + | + | + | ||||||
image | C1 | C2 | C3 | C3 | C6 | C6 | S3 | C3×S3 | C32⋊C6 | C3×C32⋊C6 |
kernel | C32×C32⋊C6 | C32×He3 | C3×C32⋊C6 | C32×C3⋊S3 | C3×He3 | C34 | C34 | C33 | C32 | C3 |
# reps | 1 | 1 | 24 | 2 | 24 | 2 | 1 | 26 | 1 | 8 |
Matrix representation of C32×C32⋊C6 ►in GL8(𝔽7)
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 | 0 | 6 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
0 | 0 | 0 | 0 | 0 | 0 | 2 | 5 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 5 |
0 | 0 | 0 | 0 | 0 | 6 | 0 | 3 |
0 | 0 | 0 | 0 | 0 | 4 | 2 | 3 |
0 | 0 | 4 | 0 | 5 | 0 | 0 | 0 |
0 | 0 | 6 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 4 | 2 | 3 | 0 | 0 | 0 |
G:=sub<GL(8,GF(7))| [2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2],[2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,5,3,3,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,6,5,5],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,6,4,0,0,0,0,0,0,0,2,0,0,0,0,0,5,3,3,0,0,4,6,4,0,0,0,0,0,0,0,2,0,0,0,0,0,5,3,3,0,0,0] >;
C32×C32⋊C6 in GAP, Magma, Sage, TeX
C_3^2\times C_3^2\rtimes C_6
% in TeX
G:=Group("C3^2xC3^2:C6");
// GroupNames label
G:=SmallGroup(486,222);
// by ID
G=gap.SmallGroup(486,222);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,3244,3250,11669]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^3=e^6=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1*d^-1,e*d*e^-1=d^-1>;
// generators/relations